Program Course Description Template

(Required information needed for course submission)

Program Information

Program Name: UC Davis Center for Integrated Computing and STEM Education (C-STEM)
Contact Person
First Name: Harry
Last Name: Cheng
Position/Title: Professor/ C-STEM Center Director
Phone Number: (530) 752 - 9082
E-mail: info@c-stem.ucdavis.edu

SECTION A. BASIC COURSE INFORMATION

Course Title: Computer Programming for Solving Applied Problems (C-STEM)

Transcript Abbreviation(s) / Course Code(s): Computing Programming for Solving Applied Problems /[Course Code]
NOTE: Schools are responsible for providing the above information.

Length of Course:

Half Year (1 semester; 2 trimesters; 2 quarters)Full Year (2 semesters; 3 trimesters; 4 quarters)Two Years (4 semesters; 6 trimesters; 8 quarters)

Subject Area / Discipline:

NOTE: See attached [Appendix A] for all subject areas and disciplines.
Subject Area: College-Preparatory Elective
Discipline: Mathematics/Computer Science

UC Honors Designation:

Is this course being submitted for UC honors consideration?
NOTE: $9^{\text {th }}$ grade courses are not eligible for UC Honors consideration.
Yes
No

Grade Level:

NOTE: Grade level pertains to which grades the course has been designed.
9
『 10
区 11
$\boxtimes 12$

Course Learning Environment:

Is this course, or any separate section of this course, taught in an online learning environment?*

If "Yes," has your institution conducted a self-assessment of the online course against the iNACOL Standards for Quality Online Courses?No

If "Yes," does the course fulfill all 15 UC-identified power standards from the iNACOL Standards for Quality Online Courses?YesNo

If "Yes," how many of the remaining 37 standards from the iNACOL Standards for Quality Online Courses the course satisfy? \qquad
*Please ensure to attach a copy of your completed Online Course Self-Assessment Form.

Is this course an integrated course?

NOTE: UC encourages the development of integrated courses that combine and skills of traditional academics with contextualized learning in career technical education.

If "Yes," please indicate the Industry Sector and Career Pathway below:
NOTE: See attached [Appendix B] for all industry sectors and career pathways.

Industry Sector: Information and Communication Technologies (ICT)
Career Pathway: Software and Systems Development

SECTION B: COURSE DESCRIPTION

Course Overview:

Briefly (in a short paragraph) provide a brief summary/snapshot of the course's content:

This course provides students with the fundamental knowledge of computer programming for solving applied problems in C. A user-friendly RoboBlockly and C/C++ interpreter Ch will be used for learning computational thinking and software development. Students learn how a computer works and structured programming in C for software development. The topics include programming constructs, data types and declaration of variables, expressions and operators, selection statements, repetition, flowcharts for algorithm development, functions for modular programming, arrays for statistical data analysis, plotting for visualizing data (using scatter plot, dot plot, bar graph, histogram, Box-and-Whisker plot, etc.), linear regression and curve fitting, processing data files, animation, robotics applications, and applications in math and science. The emphasis of the course is to introduce the students to software development concepts. This course also focuses on algorithm development and computer programming for solving applied problems in science, technology, engineering and math (STEM), such as solving problems in Algebra and robotics. Considerable attention is devoted to program design, task decomposition, testing, debugging, and software reuse. Students write computer programs with graphical plotting in an integrated development environment. Through problem-based projects, students develop critical thinking, problem solving, computational thinking, effective communication, and teamwork skills.

Pre-Requisites: Algebra I or Integrated Mathematics I, Required x Recommended
NOTE: Laboratory science and Advanced VPA courses require a pre-requisite. Some courses require appropriate pre-requisites. Please refer to the "A-G" Guide for more information.

Co-Requisites: \qquad Required \qquad Recommended \qquad

Course Content:

For each unit of the course, provide:

1) A brief description (5-10 sentences) of topics to be addressed that demonstrates the critical thinking, depth and progression of content covered.
2) A brief summary ($2-4$ sentences) of at least one assignment that explains what a student produces, how the student completes the assignment and what the student learns.

Unit One: Introduction to Programming, Variables, Data Types, and Input/Output

This unit introduces the students to how a computer works, basics of computer programming, and the importance of computing in the $21^{\text {st }}$ century. It leads them to the programming language syntax in $\mathrm{C} / \mathrm{C}++$ using the C/C++ interpreter Ch. Students evaluate expressions and practice order of operations in a Ch Command Shell. Students write programs with proper programming language syntax to review and practice basic operations with real numbers, order of operations, and manipulating and evaluating variables in simple algebraic equations. Students learn formatted input and output making their program meet specific design criteria.

To meet the challenges of this unit, students persevere in solving specific problems with attention to precision, construct variable arguments and critique the reasoning of others, and model with mathematics. Throughout this unit, students understand problems that arise in real life context of programming and find solutions of multi-step problems, choose and interpret the problems with formulas and conceptual understanding. These skills are demonstrated in multi-tiered tasks throughout the unit and students apply their knowledge and understanding of basic programming syntax and expressions to create mathematical formulas and models, and then translate the mathematical models into computer programs.

Unit Two: Operators and Expressions

Students develop code to apply arithmetic operators to accomplish addition, subtraction, multiplication, division, and modulus operations in a C program. Students will understand the order of operations as it pertains to mathematical operators. Students will use relational operators to test the relationship between values and variables. Students will use logical operators to test the relationship between the results of two or more relational operators. Students will use compound assignment operators as a shortcut when modifying the value of a variable. Students will use increment and decrement operators to add or subtract values from/to a variable.

For example, students will be able to write a program to check if a person is old enough to drive. It is assumed that a person of 16 years is eligible to obtain a driver license. The program should let the user enter his/her name and age. Students will need to use selection statements to determine specific criteria for obtaining a driver license. Using formatted output, students will notify the user if they are eligible to obtain a driver license.

Unit Three: Flowcharts, Decision Making, Loops, and Random Numbers

Students will understand the concept of visually planning a computer program using graphical symbols to represent the actions and flow of a computer algorithm. Students will understand how to use selection/decision symbols in a flowchart to represent the path the computer program must take when a conditional statement is executed. Students will use repetition statements with "while" and "for" loops to control how many times a series of statements are executed. Students will understand the importance of looping in computer programming. Students will apply the C statement "break" to exit early from "for" and "while" loops.

For example, using random number generation students will create a number guessing game. Students will write a program to randomly generate a number between a given upper and lower bound. The user will be prompted to guess the random number and will be notified if their guess is too high or too low. The program will exit when the correct number is guessed.

Unit Four: Modular Programming with Functions

Students will understand the concept of using functions to modularize a program. Students will incorporate a function prototype that allows the function to be defined after the main section of a program and understands that function prototyping aids in the readability of a complicated C program that contains many user-defined functions. Students will understand the concept of a "void" type when a function either does not require any argument or does not need to return a value after it is executed. Students will utilize a graphical library to plot functions and computer-generated graphs in different graphical formats. Students will recognize that many mathematical functions are included in the standard C library.

Using functions students will write an interactive game program that simulates playing blackjack with the dealer. Students write a function without argument to display a welcome message as well as functions for the face, color, and suit of the respective cards. Full understanding of decision making and looping in C will be necessary to determine if the player or the dealer is closest to 21 without going over.

Unit Five: Arrays for Processing, Organizing, and Displaying Data

Students will write computer code to initialize and assign values to an array. They will understand how the structure of an array is implemented in computer memory. Students will write computer code to initialize and assign values to an array variable and process the data in the array to find the mean, minimum/maximum values, median, sum, and standard deviation of the data. Students will differentiate the behavior of array variables against non-array variables when passed to a function. Students will understand how information located in arrays can be plotted for graphical analysis. The data can be interpreted using statistical models like scatter plots, dot plots, bar graph, histogram, and Box-and-Whisker plots.

Using basic knowledge of arrays, students will aggregate lab data and store it in an array. Once the values are stored in the array, students will perform basic statistical functions on the array. Students will calculate the mean, maximum/minimum, median, sum, and standard deviation for values of the array using C functions. The data in the array will also be analyzed using scatter plots, dot plots, bar graph, histogram, and Box-and-Whisker plots.

Unit Six: Working with Data Files

Abstract

In this unit students will learn how to store and retrieve information from text data files for numerical and graphical analysis. Students will understand that to open a file you need to use a file pointer to create a stream between the program and file to perform input and output functions. Students will manipulate the date in a file, modifying and outputting specific pieces of data into a different or same file. Students will also learn how to graph the data through more basic procedures using loops and arrays, as well specific plotting functions.

Using the array created in unit five, students will first output the data into a text file. Using file processing capability, students will read in the text file for graphical analysis. Using the graphical plotting ability of Ch students will choose an appropriate graph (scatter plot, dot plot, bar graph, histogram, Box-and-Whisker plot, etc.) and plot their data sets.

Unit Seven: Graphical Plotting and Quick Animation

In this unit, students will learn the basic concepts of object-oriented programming in C++. In this unit, students will learn plotting various objects including points, lines, circles, arcs, triangles, and quadrilaterals. Students will also learn how to bring those to live through animation. Students will learn common primitives such as points, text, circles, arcs, lines, polygons, and rectangles. Primitives can be fixed in a specific quadrant or at a particular angle. By dictating placement along a movement path, students will create more complex programs with their animations. Students will learn mathematics through animations by programming the path of a projectile given specific initial conditions. Students will dictate more complex programs that will incorporate motion of a projectile. Multiple primitives can be animated simultaneously creating complex movement. Students will also learn how to use previous topics on functions and loops to conveniently create complicated animations for various applications.

Drawing on knowledge of quadratic equations, students will first solve the equation for the trajectory of a soccer ball kicked from the ground. Students will determine the height of the vertex, the distance of travel, and the time of flight. Using quick animation students will animate this trajectory and solve the problem numerically as well as graphically.

Unit Eight: Robotics Applications

Students will learn to program robots to solve real-world application problems in math, science, and engineering. Students will learn to program virtual Linkbot and Lego Mindstorm NXT robotic systems through the robot simulation environment RoboBlockly and RoboSim with virtual robots. If hardware Linkbot or NXT robotic systems is available, students will also learn to program these hardware robotic systems. The same code can be used to control both virtual robots and hardware robots. Students will be
able to move specific joints for specific angles or times and change joint speed. For a robot configured as a two-wheel vehicle, it can move for a given distance and turn for a given angle. Students will learn how to set up multiple identical robots in an array as a group so one command can be mimicked amongst the group. Students will learn the difference between blocking and non-blocking functions and how they relate to controlling multiple individual robots.

Throughout the unit students will work in teams to complete projects which will include several Linkbots or NXTs grouped in arrays performing synchronized dancing or acting in a play written and controlled by a program autonomously. Students will use Linkbots or NXTs to simulate real-world mathematical concepts like solving systems of linear equations.

If the student has access to physical robots of Linkbot or NXT, they will submit a video to the RoboPlay Video Competition. Students will create a short $2-5$ minute video showcasing their robot programming skill aimed at one of the following categories: Best Storyline, Best Choreography, Most Interesting Task, Best Custom Designed Part, Best Film Promoting Computational Thinking, and Best Overall Video.
If physical robots are not an option, students will create a complex obstacle course using the simulated environment in RoboSim. Students will exchange obstacles with classmates and will be challenged to complete the mazes of their peers.

Unit Nine: Applications in Mathematics and Science

Students will learn systems of linear equations (point slope, standard form, etc.), linear inequalities, polynomials such as quadratics, cubic's and others polynomials. Through computer programming students will use the rules for radicals and exponents and solve exponential growth and decay problems. Students will be able to use general formulas provided, substitution and combination, to write programs that solve any linear or quadratic system. Students will graph a system of equations in two variables and then visually obtain the solution of the system. Students will be able to check arithmetic operations performed on rational expressions using the Ch command window as well as graph rational functions with the correct domain and their asymptotes. Students will write interactive code that uses the Pythagorean Theorem, plots scatter plots, answers area and perimeter questions, calculates distance, compound interest, and finds the midpoint.

Throughout this course many example of math and science application will be used. Students will learn the relevance of computer programming in math and science. Many programming concepts will be demonstrated through exercises. For example: students will use the graphs utility in Ch to solve systems of two linear equations and inequalities. Students will write programs to solve them numerically as well as graphically. Students will also learn the motion with position and velocity, and measurement in physical science graphically, numerically, symbolically, verbally, and experimentally.
(Please feel free to add as many unit fields as necessary.)

SECTION C: COURSE MATERIALS

Primary Textbook:

NOTE: Include list of primary and secondary course materials. Course materials help UC understand what materials are used to support student learning and the delivery of the course.

Title: Learning C Programming: An Introduction to Computer Science
Edition: 1st

Publication Date: August 2014
Publisher: UC Davis C-STEM Center
Author(s): Harry H. Cheng
URL Resource(s): http://c-stem.ucdavis.edu
Usage: x \qquad Primary Text x \qquad Read in entirety or near entirety

Software: Ch Professional Edition
Developer: SoftIntegration, Inc.
Website: http://www.softintegration.com/download/

Software: C-STEM Studio
Developer: UC Davis C-STEM Center
Website: http://c-stem.ucdavis.edu/downloads/

Software: Linkbot Labs

Developer: Barobo, Inc.
Website: http://c-stem.ucdavis.edu/downloads/

Supplemental / Secondary Instructional Materials:
NOTE: Please list any other course materials here. These may include but are not limited to: literary texts, manuals, periodicals, articles, websites, primary documents, multimedia, etc.

Secondary Textbook:

NOTE: Include list of primary and secondary course materials. Course materials help UC understand what materials are used to support student learning and the delivery of the course.

Title: C for Engineers and Scientists: An Interpretive Approach
Edition: 1st
Publication Date: 2010
Publisher: UC Davis C-STEM Center
Author(s): McGraw Hill
URL Resource(s): http://iel.ucdavis.edu/cfores/

Title: Learning Computer Programming with Ch for the Absolute Beginner
Edition: 1st
Publication Date: May 2016
Publisher: UC Davis C-STEM Center
Author(s): Harry H. Cheng
URL Resource(s): http://c-stem.ucdavis.edu

Title: Learning Robotics with Linkbot for the Absolute Beginner
Edition: 6th
Publication Date: May 2016
Publisher: UC Davis C-STEM Center
Author(s): Harry H. Cheng
URL Resource(s): http://c-stem.ucdavis.edu

Title: Learning Common Core Mathematics with C/C++ Interpreter Ch for Integrated Mathematics 1
Edition:
Publication Date: June 2016
Publisher: UC Davis C-STEM Center
Author(s): Harry H. Cheng
URL Resource(s): http://c-stem.ucdavis.edu
(Please feel free to add as many unit fields as necessary.)

[APPENDIX A] — SUBJECT AREAS / DISCIPLINES

NOTE: For detailed information on all subject requirements, please visit the A-G Guide.
\qquad ("a") - History / Social Science
\qquad U.S. History
__ American Government / Civics
\qquad World History / Geography / Cultures
\qquad ("b") - English
English
\qquad English as a Second Language (ESL)/ English Language Development (ELD)
\qquad ("c") - Mathematics
Algebra 1; Yr 1 of 2
Algebra 1; Yr 2 of 2
\qquad Algebra 1
___ Mathematics I
__ Geometry; Yr 1 of 2
__ Geometry; Yr 2 of 2
___ Geometry

Mathematics II

Algebra 2; Yr 1 of 2
 \qquad
 Algebra 2; Yr 2 of 2
 \qquad
 Algebra 2
 _ Mathematics 3
 __ Algebra 2 / Trigonometry
 Advanced Mathematics
 __ Statistics
 \qquad
 Computer Science

\qquad
 ("d") - Laboratory Science

Biology
__ Chemistry
__ Physics
__ Earth and/or Space
___ Integrated Science
NOTE: Students that enroll in an integrated-science program (ISP) are strongly advised to complete the entire three-year sequence. In most cases, the first year of an integrated-science sequence fulfills only the " g " elective requirement; the second and third years of the sequence then fulfill the two-year "d" laboratory science requirement. Accordingly, if only ISP I is successfully completed, then two courses from the categories of Biology, Chemistry, or Physics in the "d" subject area must be completed. If ISP I and only one of ISP II or ISP III are completed, then one additional course from the categories of Biology, Chemistry, or Physics from the "d" subject area must be taken to fulfill the "d" requirement.
\qquad Interdisciplinary Science
NOTE: This category demonstrates that the course is cross-disciplinary and is often used for advanced science courses such as AP Environmental Science or Biochemistry.
("e") - Language Other than English
_LOTE Year 1
_LOTE Year 2
_LOTE Year 3
LOTE Year 4+
Language:
\qquad American Sign Language (ASL)
\qquad Arabic
\qquad Chinese
\qquad French
\qquad German
\qquad Hebrew
\qquad Italian
\qquad Japanese
\qquad Latin
\qquad Other
\qquad
\qquad Spanish
\qquad ("f") - Visual \& Performing Arts
\qquad Dance
\qquad Music
\qquad Theater Arts
\qquad Visual Arts
\qquad Interdisciplinary Arts
x \qquad (" g ") - College-Preparatory Elective

History / Social Science
\qquad English
x \qquad Mathematics / Computer Science
Laboratory Science—Biology / Life Science
Laboratory Science—Physical Science
\qquad
Laboratory Science—Earth / Space Science
Laboratory Science—Interdisciplinary Science
Laboratory Science—Integrated Science
Language Other than English
\qquad
Visual \& Performing Arts
\qquad Interdisciplinary
[APPENDIX B] — INDUSTRY SECTORS / CAREER PATHWAYS NOTE: This applies to integrated courses only.

___ Agriculture and Natural Resources

\qquad Agricultural Business
\qquad Agricultural Mechanics
\qquad Agriscience
\qquad Animal Science
\qquad Forestry and Natural Resources
___ Ornamental Horticulture
\qquad Plant and Soil Science
\qquad Arts, Media, and Entertainment
\qquad Media and Design Arts
\qquad Performing Arts
\qquad Production and Managerial Arts
\qquad Building and Construction
\qquad Cabinetmaking and Wood Products
\qquad Engineering and Heavy Construction
\qquad Mechanical Construction
\qquad Residential and Commercial Construction
__ Education, Child Development and Family Services
\qquad Child Development
__ Consumer Services
\qquad Education
\qquad Family and Human Services
\qquad Energy and Utilities
\qquad Electromechanical Installation and Maintenance
\qquad Energy and Environmental Technology
\qquad Public Utilities
\qquad Residential and Commercial Energy and Utilities
\qquad Engineering and Design
\qquad Architectural and Structural Engineering
\qquad Computer Hardware, Electrical, and Networking Engineering
\qquad Engineering Design
\qquad Engineering Technology
\qquad Environment and Natural Science Engineering
\qquad Fashion and Interior Design
\qquad Fashion Design, Manufacturing, and Merchandising
\qquad Interior Design, Furnishings, and Maintenance
\qquad Finance and Business
\qquad Accounting Services
\qquad Banking and Related Services
\qquad Business Financial Management
__ Health Science and Medical Technology
\qquad Biotechnology Research and Development
\qquad Diagnostic Services
\qquad Health Information
\qquad Support Services
\qquad Therapeutic Services
\qquad Hospitality, Tourism, and Recreation
\qquad Food Service and Hospitality
\qquad Food, Science, Dietetics, and Nutrition
\qquad Hospitality, Tourism, and Recreation
x \qquad Information Technology Information Support and Services Media Support and Services
\qquad Network Communications
X \qquad Programming and Systems Development

Manufacturing and Product Development

\qquad Graphic Arts Technology
\qquad Integrated Graphics Technology
\qquad Machine and Forming Technology
\qquad Welding Technology
\qquad Marketing, Sales, and Service
E-Commerce
\qquad Entrepreneurship
\qquad International Trade
\qquad Professional Sales and Marketing
Public Services
\qquad Human Services
\qquad Legal and Government Services
\qquad Protective Services

Transportation

\qquad Aviation and Aerospace Transportation Services
\qquad Collision Repair and Refinishing
\qquad Vehicle Maintenance, Service, and Repair

